BACKGROUND

- **Streaming Algorithm:**
 - One pass over N input elements
 - Maintain at most $o(N)$ elements in memory
 - Worst case/random stream order
 - Randomized/deterministic algorithm
 - Approximation ratio $\mathbb{E}[f(S)] \geq R \cdot f(OPT)$

- **Assumptions:**
 - Nonnegative $f(A) \geq 0, \forall A$
 - Monotone $f(B | A) \geq 0, \forall A, B$
 - γ_k-weakly submodular $\gamma_k \leq \min_{L \neq \emptyset} \frac{\sum_{j \in L} f(j | L)}{f(S) - f(L)}$

- **Example Function:**
 $$f_k(S) = \min(2 \cdot |S \cap U| + 1, 2 \cdot |S \cap V|)$$

- **U = \{u_1, \ldots, u_k\} V = \{v_1, \ldots, v_k\} D = \{w_1, \ldots, w_k\}$$

 - Worst case order begins with only elements from $U \cup D$
 - Sublinear streaming algorithms must drop many u before any v arrive
 - Approximation ratio is arbitrarily small for large k

- **Approximation Ratios:**
 - Let \mathcal{E} be the event $f(S) < \tau$ (balanced if $f_2(\mathcal{E}) = 2 - \sqrt{2 - e^{-\gamma_k}}$)
 - $\mathbb{E}[f(S)] \geq (1 - Pr[\mathcal{E}]) \cdot \tau$
 - $\mathbb{E}[f(S)] \geq \frac{1}{2} \left(\gamma_k \cdot f_2(\mathcal{E}) - e^{-\gamma_k/2} \right)$, $f(OPT) - 2\tau$
 - Show one instance is guaranteed to be a good approximation

PROOF TECHNIQUES

- **Example Function:**
 $$f_k(S) = \min(2 \cdot |S \cap U| + 1, 2 \cdot |S \cap V|)$$

- **U = \{u_1, \ldots, u_k\} V = \{v_1, \ldots, v_k\} D = \{w_1, \ldots, w_k\}$$

 - Worst case order begins with only elements from $U \cup D$
 - Sublinear streaming algorithms must drop many u before any v arrive
 - Approximation ratio is arbitrarily small for large k

- **Approximation Ratios:**
 - Let \mathcal{E} be the event $f(S) < \tau$ (balanced if $f_2(\mathcal{E}) = 2 - \sqrt{2 - e^{-\gamma_k}}$)
 - $\mathbb{E}[f(S)] \geq (1 - Pr[\mathcal{E}]) \cdot \tau$
 - $\mathbb{E}[f(S)] \geq \frac{1}{2} \left(\gamma_k \cdot f_2(\mathcal{E}) - e^{-\gamma_k/2} \right)$, $f(OPT) - 2\tau$
 - Show one instance is guaranteed to be a good approximation

FUTURE WORK

- Tighten approximation bounds
- Analyze additional classes of algorithms: randomized, γ input
- Combinatorial interpretability for fairness, adversarial examples, ...

SUMMARY

Many discrete optimization applications have a very large ground set or an expensive function evaluation oracle. We design and analyze streaming algorithms for the general class of weakly submodular set functions:

- **Worst case stream order:** No randomized streaming algorithm using sublinear memory can maximize a 0.5-weakly submodular function with constant approximation ratio
- **Random stream order:** Greedy, deterministic streaming algorithm for weak submodular maximization with constant approximation ratio
- **Experimental Evaluation:** Nonlinear sparse regression and interpretability of black-box neural networks

EXPERIMENTAL RESULTS

Sparse logistic regression: Compute pairwise products of features as needed

- **Phishing Dataset, N=4.7k, 40 iterations**

Interpretability: Select image segments which maximize label’s likelihood

- **max \frac{softmax_score(Image_2)}{\sum_{|S| \leq k}}**

Transfer Learning (InceptionV3 flower classification)

- **Comparison with LIME**

REFERENCES