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STREAMING GREEDY ALGORITHMS

Discrete Derivative of a test element w.r.t. current solution:

fi]A)= f(Aud) — f(A)
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SUMMARY

Many discrete optimization applications have a very large ground set or an
expensive function evaluation oracle. We design and analyze streaming
algorithms for the general class of weakly submodular set functions:

BACKGROUND

* Streaming Algorithm:

* One pass over /N input elements

ThresholdGreedy
* Initialize S =90
* Add incoming element w if discrete derivative exceeds threshold

S| <k and f(ul|S)>71/k

* Maintain at most o(/V) elements in memory max f(S)
|S|<k * Worst case stream order: No randomized streaming algorithm using
sublinear memory can maximize a 0.5-weakly submodular function with

constant approximation ratio

* Random stream order: Greedy, deterministic streaming algorithm for
weak submodular maximization with constant approximation ratio

* Worst case/random stream order
* Randomized/deterministic algorithm

* Approximation ratio E[f(S)] > R- f(OPT)

STREAK

* Compute running maximum singleton f(u;,) =m

* Run and update O(e~ ! log k) instances of ThresholdGreedy, with
exponentially spaced thresholds

* Monotone f(B|A)>0, VAB re{(l—¢)|ic€Zand (1—¢e)m/(9%k*) < (1—¢)" < mk}

. Yk-weakly submodular 7 £ min 2 jes\e JU 1 L) EXPERIMENTAL RESULTS * Return the output of best instance or the best singleton

\L\L,’\g%jé\(:gr f(S|L) max{Syr«, U }

PROOF TECHNIQUES

* Example Function: £, (S) = min{2-|SNU

o0 AA
o0 AA

U=Auy,...,up} V =Hv1,...,0%} D ={w,...,wq}

* Assumptions:
* Nonnegative f(A) >0,VA

* Experimental Evaluation: Nonlinear sparse regression and
interpretability of black-box neural networks

Sparse logistic regression: Compute pairwise products of features as needed
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Performance Cost Tradeoff * For every constant ¢ € (0, 1], there exists a 0.5-weakly
submodular set function f(.S) such that any randomized algorithm
which uses o(N) memory to solve max f(.S) hasan
approximation ratio less than c . |SI<k

Interpretability: Select image segments which maximize label’s likelihood

(Yok = 0.5, fmax = 2F) max softmax_score(Imageg)
S|<k
* Worst case order begins with only elements from U U D S1=

* Sublinear streaming algorithms must drop many u before any v arrive Transfer Learning (InceptionV3 flower classification)

* Approximation ratio is arbitrarily small for large £k A C G t
verage Lase guarantees

* Approximation Ratios:
> Let Ebetheevent f(S) <7  (balancedif Pr[€] =2 — /2 — e—7/2)

Algorithm THRESHOLDGREEDY
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* Show one instance is guaranteed to be a good approximation

FUTURE WORK

* Tighten approximation bounds

Comparison with LIME
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* Analyze additional classes of algorithms: randomized, 7Y input
* Combinatorial interpretability for fairness, adversarial examples, ...




