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Introduction

e Perform analytics on large graphs

- How does information spread across the Web?
- Is this social network user a spam bot?
- Classify a protein as helpful or harmful

o Generalize existing subgraph analysis
- Triangle counts, clustering coefficient, graphlet frequencies

e Scalable, distributed algorithms
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Graph 3-profile

e Count the induced subgraphs formed by selecting all triples of
vertices
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Graph 3-profile

e Count the induced subgraphs formed by selecting all triples of
vertices
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

e n(G)=1[2,7,2,2,2,2,2,2,2,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

e n(G)=1[0,2,2,2,7,2,2,2,2,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

e n(G)=1[0,0,0,0,7,7,7,7,7,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

e n(G) =1[0,0,0,0,1,2,2,2,7,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

« n(G) =1[0,0,0,0,2,7,2,7,7,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

« n(G) =[0,0,0,0,2,0,0,7,2,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

e n(G) =10,0,0,0,2,0,0,1,?,2,7]
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Graph 4-profile

e Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

* n(G) =0,0,0,0,2,0,0,1,2,0,0]
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Graph 4-profile

Definition

Let N; be the number of F;'s in a graph G. The vector
n(G) = [Ny, N1, ..., Nipg] is called the global 4-profile of G.

- Always sums to (l‘il), the total number of 4-subgraphs
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Graph 4-profile

Definition

Let N; be the number of F;'s in a graph G. The vector
n(G) = [Ny, N1, ..., Nipg] is called the global 4-profile of G.

- Always sums to (l‘il), the total number of 4-subgraphs

Definition

For each v € V, the local 4-profile counts how many times v
participates in each F; with 3 other vertices.
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e Local 4-profiles embed each vertex into an 11 dimensional
feature space

- Spam detection
- Generative models

o Global 4-profile concisely describes local connectivity
- Molecule classification
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Introduction

e Problem: Compute (or approximate) 4-profile quantities for a
large graph
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Introduction

e Problem: Compute (or approximate) 4-profile quantities for a
large graph

e Previous approaches have 2 drawbacks

- Require global communication
- Many vertices redundantly repeat the same calculations

E. R. Elenberg Distributed Estimation of Graph 4-Profiles 7/23



Contributions

@ Design novel, distributed algorithm to calculate local 4-profiles
® Derive improved concentration bounds for 4-profile sparsifiers

©® Evaluate performance on real-world datasets
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Related Work

Well studied across several communities (graphlets, motifs,
subgraph frequencies):

e Graph sub-sampling

[Kim, Vu '00] [Tsourakakis, et al. '08 -'11] [Jha, et al. '15]
e Large-scale triangle counting

[Shank '07] [Satish, et al. '14] [Eden, et al. '15]
e Subgraph/graphlet counting equations

[Kloks, et al. '00] [Kowaluk, et al. '13]
ORCA [Hotevar, Dem3ar '14] [E. '15] [Ahmed, et al. '15]
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® 4-PROF-Di1sT Algorithm
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e Message passing algorithm in the Gather-Apply-Scatter
framework

- GraphlLab, Pregel, Spark GraphX, etc.
- Communication only allowed between adjacent vertices

- Intermediate results stored as edge data
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@ Each vertex computes its local 3-profile and triangle list
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@ Each vertex computes its local 3-profile and triangle list

® Each vertex solves a 17 x 17 system of equations relating its
local 4-profile to its neighbors’ local 3-profiles

- Edge Pivots [Kloks, et al. '00] [Kowaluk, et al. '13] [E. '15]

- 4-clique Counting

- 2-hop Histogram
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© 4-profile Sparsifier
Edge Sub-sampling Process
Concentration Bound
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Edge Sub-sampling Process

e Sub-sample each edge in the graph independently with
probability p

e Relate the original and sub-sampled graphs via a 1-step
Markov chain
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Edge Sub-sampling Process: 4-clique
Original Sub-sampled
Z\

E. R. Elenberg Distributed Estimation of Graph 4-Profiles 13/23



Edge Sub-sampling Process: 4-clique

Original m » ;m Sub-sampled

E. R. Elenberg Distributed Estimation of Graph 4-Profiles 13/23



Edge Sub-sampling Process: 4-clique

Original m » ;m Sub-sampled

1
Estimator| = — | Sub-sampled
p
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Edge Sub-sampling Process

In general, construct an invertible transition matrix H

H;; = P(sub-sampled = F; | original = Fj)

Unbiased | .1 |Sub-sampled
Estimators| 4-profile

E. R. Elenberg Distributed Estimation of Graph 4-Profiles 14/23



Main Concentration Result

e Nig - # 4-cliques

e k19 - Maximum # 4-cliques sharing a common edge

Theorem (4-clique sparsifier)

If the sampling probability

. <10g(2/5)/<710)1/12’

262N10

then the relative error is bounded by ¢ with probability at least
1-6.
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Main Concentration Result

e Nig - # 4-cliques

e k19 - Maximum # 4-cliques sharing a common edge

Theorem (4-clique sparsifier)

If the sampling probability

. <10g(2/5)/<710)1/12’

262N10

then the relative error is bounded by ¢ with probability at least
1-6.

Proof Sketch:

- 4-clique estimator is associated with a read-kig function family

f(G,p) = e1€9€4€5€e7638 + €4€5€63€9€10 + . . .
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O Experiments

E. R. Elenberg Distributed Estimation of Graph 4-Profiles



Implementation

e GraphlLab PowerGraph v2.2
e Multicore server
e 256 GB RAM, 72 logical cores
e EC2 cluster (Amazon Web Services)
e 20 c3.8xlarge, 60 GB RAM, 32 logical cores each
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Implementation

e GraphlLab PowerGraph v2.2
e Multicore server
e 256 GB RAM, 72 logical cores
e EC2 cluster (Amazon Web Services)
e 20 c3.8xlarge, 60 GB RAM, 32 logical cores each

Datasets
Name Vertices | Edges (undirected)
WEB-NOTRE 325,729 1,090, 108
LiveJournal 4,846,609 42,851,237
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2-hop histogram
20 nodes
of Graph 4-Profiles

Histogram, 10 runs
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Results: Concentration Bounds

Livedournal, Sparsifier Accuracy
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Results: Concentration Bounds

Accuracy: |exact - approx|

Livedournal, Sparsifier Accuracy
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Improves on previous bounds if p = Q(1/log |E|)
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Results: Multicore Running Time Comparison, 10 runs

LiveJournal, Asterix
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Results: Multicore Running Time Comparison, 10 runs

LivedJournal, Asterix
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Results: AWS Running Time Comparison, 10 runs

R. Elenberg

Running time [sec]

Livedournal, AWS
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©® Conclusions
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@ 2-hop histogram reduces network communication in a
distributed setting

® Edge sub-sampling produces fast, accurate 4-profile estimates
- Bounds for other subgraphs in the full paper

©® Distributed/parallel implementation improves performance at
scale

github.com/eelenberg/4-profiles
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https://github.com/eelenberg/3-profiles
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(Backup) 2-hop Histogram

o At each vertex a, store a (p, c,[p]) pair for each neighbor p
e Forany a € I'(v) and p ¢ I'(v),
calp) =1 << wvap forms a 2-path

e Gather across neighbors to count the number of distinct
2-paths from v to p
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(Backup) 2-hop Histogram

o At each vertex a, store a (p, c,[p]) pair for each neighbor p
e Forany a € I'(v) and p ¢ I'(v),
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(Backup) Local 3-profile

Vertex program in the Gather-Apply-Scatter framework [E. '15]
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(Backup) Local 3-profile

Vertex program in the Gather-Apply-Scatter framework [E. '15]

@ For each vertex v: Gather and Apply vertex IDs to store I'(v)
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(Backup) Local 3-profile

Vertex program in the Gather-Apply-Scatter framework [E. '15]

@ For each vertex v: Gather and Apply vertex IDs to store I'(v)

® For each edge va: Scatter

n3va = |I'(v) NT(a)l, =)

5 = 0] — IT) AT @)] 1, ..
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(Backup) Local 3-profile

Vertex program in the Gather-Apply-Scatter framework [E. '15]

@ For each vertex v: Gather and Apply vertex IDs to store I'(v)

® For each edge va: Scatter

n3va = |I'(v) NT(a)l, =)

5 = 0] — IT) AT @)] 1, ..

© For each vertex v: Gather and Apply

_ 1
3w =73 ZaEF(v) N3,va @&

c _ 1 c
n2,v -3 Zaef‘(v) n2,va’ s @2.
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(Backup) Edge Pivot Equations
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors

E. R. Elenberg Distributed Estimation of Graph 4-Profiles 23/23



(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors

“—o - 1.7
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(Backup) Edge Pivot Equations

e Relate local 4-profile at v to neighboring local 3-profiles

e Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors

“—o = T +717
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(Backup) Clique Counting

e Directly count the number of 4-cliques, Fig

@ Initially, each vertex stores its triangle list A(v)
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(Backup) Clique Counting
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@ Initially, each vertex stores its triangle list A(v)

® For each edge v:
Gather triangles of a that contain 3 neighbors of v
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(Backup) Clique Counting

e Directly count the number of 4-cliques, Fig

@ Initially, each vertex stores its triangle list A(v)

® For each edge v:
Gather triangles of a that contain 3 neighbors of v
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(Backup) Clique Counting

e Directly count the number of 4-cliques, Fig

@ Initially, each vertex stores its triangle list A(v)

® For each edge v:
Gather triangles of a that contain 3 neighbors of v

©,
Y/
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(Backup) Clique Counting

e Directly count the number of 4-cliques, Fig

@ Initially, each vertex stores its triangle list A(v)

® For each edge v:
Gather triangles of a that contain 3 neighbors of v

2aer(w) [(b;¢) € Ala) : b € T(v), ¢ € T(v)|
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(Backup) Concentration Result

e Because there are no large constants, our concentration
bounds improve on earlier work in practical settings

Corollary (Comparison with [Kim,Vu])

Let G be a graph with m edges. If p = Q(1/logm) and

0 = Q(1/m), then read-k provides better triangle sparsifier
accuracy than [Kim,Vu]. If additionally k19 < N150/6, then read-k
provides better 4-clique sparsifier accuracy than [Kim, Vu].
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