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Introduction

• Perform analytics on large graphs

- How does information spread across the Web?
- Is this social network user a spam bot?
- Classify a protein as helpful or harmful

• Generalize existing subgraph analysis

- Triangle counts, clustering coefficient, graphlet frequencies

• Scalable, distributed algorithms
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Graph 3-profile

• Count the induced subgraphs formed by selecting all triples of
vertices

H3H2H1H0
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Graph 4-profile

• Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices
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Graph 4-profile

• Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

• n(G) = [0, 0, 0, 0, 1, ?, ?, ?, ?, ?, ?]
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Graph 4-profile

• Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

• n(G) = [0, 0, 0, 0, 2, ?, ?, ?, ?, ?, ?]
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Graph 4-profile

• Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

• n(G) = [0, 0, 0, 0, 2, 0, 0, ?, ?, ?, ?]
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Graph 4-profile

• Similarly, count the induced subgraphs formed by selecting all
sets of 4 vertices

• n(G) = [0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0]
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Graph 4-profile

Definition

Let Ni be the number of Fi’s in a graph G. The vector
n(G) = [N0, N1, . . . , N10] is called the global 4-profile of G.

- Always sums to
(|V |

4

)
, the total number of 4-subgraphs

Definition

For each v ∈ V , the local 4-profile counts how many times v
participates in each Fi with 3 other vertices.
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Motivation

• Local 4-profiles embed each vertex into an 11 dimensional
feature space

- Spam detection
- Generative models

• Global 4-profile concisely describes local connectivity

- Molecule classification
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Introduction

• Problem: Compute (or approximate) 4-profile quantities for a
large graph

• Previous approaches have 2 drawbacks

- Require global communication
- Many vertices redundantly repeat the same calculations
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Contributions

1 Design novel, distributed algorithm to calculate local 4-profiles

2 Derive improved concentration bounds for 4-profile sparsifiers

3 Evaluate performance on real-world datasets
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Related Work

Well studied across several communities (graphlets, motifs,
subgraph frequencies):

• Graph sub-sampling

[Kim, Vu ’00] [Tsourakakis, et al. ’08 -’11] [Jha, et al. ’15]

• Large-scale triangle counting

[Shank ’07] [Satish, et al. ’14] [Eden, et al. ’15]

• Subgraph/graphlet counting equations

[Kloks, et al. ’00] [Kowaluk, et al. ’13]
Orca [Hočevar, Demšar ’14] [E. ’15] [Ahmed, et al. ’15]
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4-Prof-Dist

• Message passing algorithm in the Gather-Apply-Scatter
framework

- GraphLab, Pregel, Spark GraphX, etc.

- Communication only allowed between adjacent vertices

- Intermediate results stored as edge data
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4-Prof-Dist

1 Each vertex computes its local 3-profile and triangle list

2 Each vertex solves a 17× 17 system of equations relating its
local 4-profile to its neighbors’ local 3-profiles

- Edge Pivots [Kloks, et al. ’00] [Kowaluk, et al. ’13] [E. ’15]

- 4-clique Counting

- 2-hop Histogram
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Edge Sub-sampling Process

• Sub-sample each edge in the graph independently with
probability p

• Relate the original and sub-sampled graphs via a 1-step
Markov chain
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Edge Sub-sampling Process: 4-clique
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Edge Sub-sampling Process

In general, construct an invertible transition matrix H

Hij = P(sub-sampled = Fi | original = Fj)

 Unbiased
Estimators

 = H−1

Sub-sampled
4-profile


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Main Concentration Result

• N10 - # 4-cliques

• k10 - Maximum # 4-cliques sharing a common edge

Theorem (4-clique sparsifier)

If the sampling probability

p ≥
(

log(2/δ)k10

2ε2N10

)1/12

,

then the relative error is bounded by ε with probability at least
1− δ.

Proof Sketch:

- 4-clique estimator is associated with a read-k10 function family

f(G, p) = e1e2e4e5e7e8 + e4e5e6e8e9e10 + . . .
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Implementation

• GraphLab PowerGraph v2.2

• Multicore server
• 256 GB RAM, 72 logical cores

• EC2 cluster (Amazon Web Services)
• 20 c3.8xlarge, 60 GB RAM, 32 logical cores each

Datasets

Name Vertices Edges (undirected)

WEB-NOTRE 325, 729 1, 090, 108
LiveJournal 4, 846, 609 42, 851, 237
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Results: AWS Full Neighborhood vs. Histogram, 10 runs
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Results: Concentration Bounds
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Results: Multicore Running Time Comparison, 10 runs
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Results: Multicore Running Time Comparison, 10 runs
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Results: AWS Running Time Comparison, 10 runs
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Summary

1 2-hop histogram reduces network communication in a
distributed setting

2 Edge sub-sampling produces fast, accurate 4-profile estimates

- Bounds for other subgraphs in the full paper

3 Distributed/parallel implementation improves performance at
scale

github.com/eelenberg/4-profiles
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(Backup) Results: AWS Network Communication, 10 runs
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(Backup) 2-hop Histogram

• At each vertex a, store a (p, ca[p]) pair for each neighbor p

• For any a ∈ Γ(v) and p /∈ Γ(v),

ca[p] = 1 ⇔ vap forms a 2-path

• Gather across neighbors to count the number of distinct
2-paths from v to p

p

v∑
p/∈Γ(v)

(⊕a∈Γ(v) ca[p]
2

)
F7(v) F9(v)

= +
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(Backup) Local 3-profile

Vertex program in the Gather-Apply-Scatter framework [E. ’15]

1 For each vertex v: Gather and Apply vertex IDs to store Γ(v)

2 For each edge va: Scatter

v a
n3,va = |Γ(v) ∩ Γ(a)|,

v a
nc2,va = |Γ(v)| − |Γ(v) ∩ Γ(a)| − 1, . . .

3 For each vertex v: Gather and Apply

v a
n3,v = 1

2

∑
a∈Γ(v) n3,va

v a
nc2,v = 1

2

∑
a∈Γ(v) n

c
2,va, . . .
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(Backup) Edge Pivot Equations
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(Backup) Edge Pivot Equations

• Relate local 4-profile at v to neighboring local 3-profiles

• Accumulate pairs of subgraph counts involving edge va,
summed over all neighbors

v a

∑
a∈Γ(v) n

c
2,van

e
2,va F

′
4(v) 2F7(v)

= +
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(Backup) Clique Counting

• Directly count the number of 4-cliques, F10

1 Initially, each vertex stores its triangle list ∆(v)

2 For each edge v:
Gather triangles of a that contain 3 neighbors of v

b c

v a

∑
a∈Γ(v) |(b, c) ∈ ∆(a) : b ∈ Γ(v), c ∈ Γ(v)|
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(Backup) Concentration Result

• Because there are no large constants, our concentration
bounds improve on earlier work in practical settings

Corollary (Comparison with [Kim,Vu])

Let G be a graph with m edges. If p = Ω(1/ logm) and
δ = Ω(1/m), then read-k provides better triangle sparsifier

accuracy than [Kim,Vu]. If additionally k10 ≤ N5/6
10 , then read-k

provides better 4-clique sparsifier accuracy than [Kim,Vu].
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(Backup) Results: 4-profile Sparsifier Accuracy, 10 runs
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